
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP/2016-042
2016/04/20

CMS-HIN-14-008

Pseudorapidity dependence of long-range two-particle
correlations in pPb collisions at √sNN = 5.02 TeV

The CMS Collaboration∗

Abstract

Two-particle correlations in pPb collisions at a nucleon-nucleon center-of-mass en-
ergy of 5.02 TeV are studied as a function of the pseudorapidity separation (∆η) of
the particle pair at small relative azimuthal angle (|∆φ| < π/3). The correlations
are decomposed into a jet component that dominates the short-range correlations
(|∆η| < 1), and a component that persists at large ∆η and may originate from col-
lective behavior of the produced system. The events are classified in terms of the
multiplicity of the produced particles. Finite azimuthal anisotropies are observed in
high-multiplicity events. The second and third Fourier components of the particle-
pair azimuthal correlations, V2 and V3, are extracted after subtraction of the jet com-
ponent. The single-particle anisotropy parameters v2 and v3 are normalized by their
lab frame mid-rapidity value and are studied as a function of ηcm. The normalized v2
distribution is found to be asymmetric about ηcm = 0, with smaller values observed at
forward pseudorapidity, corresponding to the direction of the proton beam, while no
significant pseudorapidity dependence is observed for the normalized v3 distribution
within the statistical uncertainties.
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1 Introduction
Studies of two-particle correlations play an important role in understanding the underlying
mechanism of particle production in high-energy nuclear collisions [1–3]. Typically, these cor-
relations are studied in a two dimensional ∆φ-∆η space, where ∆φ and ∆η are the differences
in the azimuthal angle φ and the pseudorapidity η of the two particles.

A notable feature in the two-particle correlations is the so-called “ridge,” which is an extended
correlation structure in relative pseudorapidity ∆η concentrated at small relative azimuthal
angle |∆φ| ≈ 0. The ridge, first observed in nucleus-nucleus (AA) collisions [4–6], has been
studied both at RHIC and LHC over a wide range of collision energies and system sizes [4–
15]. In AA collisions, such long-range two-particle correlations have been associated with the
development of collective hydrodynamic flow, which transfers the azimuthal anisotropy in
the initial energy density distribution to the final state momentum anisotropy through strong
rescatterings in the medium produced in such collisions [16–20]. A recent study suggests that
anisotropic escape probabilities may already produce large final-state anisotropies without the
need for significant rescattering [21]. Another possible mechanism proposed to account for the
initial-state correlations is the color glass condensate (CGC), where the two-gluon density is
enhanced at small ∆φ over a wide ∆η range [22, 23]. However, to reproduce the magnitude of
the ridge in AA collisions, the CGC-based models also require a late-stage collective flow boost
to produce the observed stronger angular collimation effect [24, 25]. As a purely initial-state
effect, the CGC correlations are expected to be independent of the formation of a thermally
equilibrated quark-gluon plasma, while the collective hydrodynamic flow requires a medium
that is locally thermalized. The latter condition might not be achieved in small systems.

Measurements at the LHC led to the discovery of a long-range ridge structure in small sys-
tems. The ridge has been observed in high-multiplicity proton-proton (pp) [9, 26] and proton-
lead (pPb) collisions [10–12]. A similar long-range structure was also found in the most central
deuteron-gold (dAu) and 3He-gold collisions at RHIC [13–15]. To investigate whether collec-
tive flow is responsible for the ridge in pPb collisions, multiparticle correlations were studied
at the LHC [27–29] in events with different multiplicities. The second harmonic anisotropy
parameter, v2, of the particle azimuthal distributions measured using four-, six-, eight-, or all-
particle correlations were found to have the same value [29], as expected in a system with global
collective flow [30]. In addition, the v2 parameters of identified hadrons were measured as a
function of transverse momentum (pT) in pPb [31, 32] and in dAu collisions [13]. The v2(pT)
distributions were found to be ordered by the particle mass, i.e., the distributions for the heav-
ier particles are boosted to higher pT, as expected from hydrodynamics, where the particles
move with a common flow velocity. The similarities between the correlations observed in the
small systems and in heavy ion collisions suggest a common hydrodynamic origin [27, 33, 34].
However it is still under investigation whether hydrodynamics can be applied reliably to pp or
pA systems.

As predicted by both CGC and hydrodynamics, the average transverse momentum, 〈pT〉, of
the produced particles should depend on pseudorapidity [35]. This pseudorapidity depen-
dence of 〈pT〉 could translate into a pseudorapidity dependence of the long-range correlations
which also depend on pT [36]. The CGC and hydrodynamics predict a different pseudorapid-
ity dependence of 〈pT〉; thus a measurement of the pseudorapidity dependence of the ridge
may provide further insights into its origin. The pseudorapidity dependence of the Fourier co-
efficients extracted using the long-range two-particle correlations could also be influenced by
event-by-event fluctuations of the initial energy density [37–39]. The pressure gradients that
drive the hydrodynamic expansion may differ in different pseudorapidity regions, causing a
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pseudorapidity-dependent phase shift in the event-plane orientation determined from the di-
rection of maximum particle emission. Evidence for such event-plane decorrelation has been
found in pPb collisions [40]. Additional studies of the pseudorapidity dependence of the ridge
may contribute to elucidating the longitudinal dynamics of the produced system.

The two-particle correlation measurement is performed using “trigger” and “associated” par-
ticles as described in Ref. [41]. The trigger particles are defined as charged particles detected
within a given ptrig

T range. The particle pairs are formed by associating each trigger particle
with the remaining charged particles from a certain passoc

T range. Typically, both particles are
selected from a wide identical range of pseudorapidity, and therefore by construction the ∆η
distribution is symmetric about ∆η = 0 [27]. Any ∆η dependence in the ridge correlation signal
would be averaged out by the integration over the trigger and associated particle pseudorapid-
ity distributions [42]. To gain further insights about the long-range ridge correlation in the pPb
system, in this paper we perform a ∆η-dependent analysis by restricting the trigger particle to
a narrow pseudorapidity range. With this method, the combinatorial background resembles
the single-particle density. Therefore, the correlation function in pPb collisions is nonuniform
in ∆η.

The ridge correlation is often characterized by the Fourier coefficients Vn. The Vn values are
determined from a Fourier decomposition of long-range two-particle ∆φ correlation functions,
given by:

1
Ntrig

dNpair

d∆φ
=

Nassoc

2π

[
1 + ∑

n
2Vn cos(n∆φ)

]
,

as described in Refs. [8, 41], where Npair is the total number of correlated hadron pairs. Nassoc

represents the total number of associated particles per trigger particle for a given (ptrig
T , passoc

T )
bin.

To remove short-range correlations from jets and other sources, a pseudorapidity separation
may be applied between the trigger and associated particle; alternatively, the correlations in
low multiplicity events may be measured and subtracted from those in high multiplicity events
after appropriate scaling, to remove the short-range correlations, which are likely to have sim-
ilar ∆η-∆φ shapes in high- and low-multiplicity collisions. Both methods are used in this anal-
ysis.

The single-particle anisotropy parameters vn are extracted from the particle-pair Fourier co-
efficients Vn, assuming that they factorize [43]. The vn values are then normalized by their
lab frame mid-rapidity values and are studied as a function of ηcm. These distributions are
compared to the normalized pseudorapidity distributions of the mean transverse momentum.

2 CMS detector
A detailed description of the CMS detector, together with a definition of the coordinate system
used and the relevant kinematic variables, can be found in Ref. [44]. The main results in this
paper are based on data from the silicon tracker. This detector consists of 1440 silicon pixel
and 15 148 silicon strip detector modules, and is located in the 3.8 T magnetic field of the su-
perconducting solenoid. It measures the trajectories of the charged particles emitted within the
pseudorapidity range |ηlab| < 2.5, and provides an impact parameter resolution of∼15 µm and
a transverse momentum resolution of about 1% for particles with pT = 2 GeV/c, and 1.5% for
particles at pT = 100 GeV/c.
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The electromagnetic calorimeter (ECAL) and the hadron calorimeter (HCAL) are also located
inside the solenoid. The ECAL consists of 75 848 lead-tungstate crystals, arranged in a quasi-
projective geometry and distributed in a barrel region (|ηlab| < 1.48) and two endcaps that
extend up to |ηlab| = 3.0. The HCAL barrel and endcaps are sampling calorimeters composed
of brass and scintillator plates, covering |ηlab| < 3.0. Iron/quartz fiber Cherenkov Hadron
Forward (HF) calorimeters cover the range 2.9 < |ηlab| < 5.2 on either side of the interaction
region. The detailed MC simulation of the CMS detector response is based on GEANT4 [45].

3 Data samples and event selection
The data used are from pPb collisions recorded by the CMS detector in 2013, corresponding to
an integrated luminosity of about 35 nb−1 [46]. The beam energies were 4 TeV for protons and
1.58 TeV per nucleon for lead nuclei, resulting in a center-of-mass energy per nucleon pair of√

sNN = 5.02 TeV. The direction of the higher-energy proton beam was initially set up to be clock-
wise, and then reversed. Massless particles emitted at ηcm = 0 were detected at ηlab = −0.465
(clockwise proton beam) or at ηlab = 0.465 (counterclockwise proton beam) in the laboratory
frame. Both datasets were used in this paper. The data in which the proton beam traveled
clockwise were reflected about ηlab = 0 and combined with the rest of the data, so that the
proton beam direction is always associated with the positive ηlab direction.

The online triggering, and the offline reconstruction and selection follow the same procedure
as described in Ref. [27]. Minimum-bias events were selected by requiring that at least one
track with pT > 0.4 GeV/c was found in the pixel tracker for a pPb bunch crossing. Because
of hardware limits on the data acquisition rate, only a small fraction (10−3) of all minimum
bias triggered events were recorded (i.e., the trigger was “prescaled”). The high-multiplicity
triggers were implemented using the Level-1 (L1) trigger and High Level Trigger (HLT) to
enhance high multiplicity events that are of interest for the particle correlation studies. At
L1, two event streams were triggered by requiring the total transverse energy summed over
ECAL and HCAL to be greater than 20 or 40 GeV/c. Charged tracks were then reconstructed
online at the HLT using the three layers of pixel detectors, and requiring a track origin within
a cylindrical region of 30 cm length along the beam and 0.2 cm radius perpendicular to the
beam [47].

In the offline analysis, hadronic collisions were selected by requiring at least 3 GeV/c of total
energy in at least one HF calorimeter tower on each side of the interaction region (positive and
negative ηlab). Events were also required to contain at least one reconstructed primary vertex
within 15 cm of the nominal interaction point along the beam axis (zvtx) and within 0.15 cm
distance transverse to the beam trajectory.

The pPb instantaneous luminosity provided by the LHC in the 2013 pPb run resulted in ap-
proximately a 3% probability that at least one additional interaction occurs in the same bunch
crossing, i.e. pileup events. A pileup rejection procedure [27] was applied to select clean,
single-vertex pPb events. The residual fraction of pileup events was estimated to be no more
than 0.2% for the highest multiplicity pPb interactions studied in this paper [27]. Based on
simulations using the HIJING [48] and the EPOS [49] event generators, these event selections
have an acceptance of 94–97% for pPb interactions that have at least one primary particle with
E > 3 GeV in both ηlab ranges of −5 < ηlab < −3 and 3 < ηlab < 5. The charged-particle
information was recorded in the silicon tracker and the tracks were reconstructed within the
pseudorapidity range |ηlab| < 2.5.

A reconstructed track was considered as a primary track candidate if the impact parameter
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significance dxy/σ(dxy) and the significance of z separation between the track and the best
reconstructed primary vertex (the one associated with the largest number of tracks, or best χ2

probability if the same number of tracks was found) dz/σ(dz) are both less than 3. In order
to remove tracks with poor momentum estimates, the relative uncertainty in the momentum
measurement σ(pT)/pT was required to be less than 10%. To ensure high tracking efficiency
and to reduce the rate of misreconstructed tracks, primary tracks with |ηlab| < 2.4 and pT >
0.3 GeV/c were used in the analysis.

The events are classified by Noffline
trk , the measured number of primary tracks within |ηlab| < 2.4

and pT > 0.4 GeV/c (a pT cutoff of 0.4 GeV/c was used in the multiplicity determination to
match the HLT requirement), in a method similar to the approach used in Refs. [9, 10]. The
high- and low-multiplicity events in this paper are defined by 220 ≤ Noffline

trk < 260 and 2 ≤
Noffline

trk < 20, respectively. The high-multiplicity selection corresponds to an event fraction of
3.4 × 10−6 of the events. Data from the minimum bias trigger are used for low-multiplicity
event selection, while the high-multiplicity triggers with online multiplicity thresholds of 100,
130, 160, and 190 are used for high multiplicity events [27].

4 Analysis procedure
The dihadron correlation is quantified by azimuthal angle φ and pseudorapidity differences
between the two particles.

∆φ = φassoc − φtrig, ∆η = ηassoc
lab − η

trig
lab ,

where φassoc and ηassoc
lab are the associated particle coordinates and φtrig and η

trig
lab are the trig-

ger particle coordinates, both measured in the laboratory frame. The per-trigger normalized
associated particle yield is defined by:

S(∆η, ∆φ) =
1

Ntrig

d2N
d∆η d∆φ

.

Unlike in previous studies [4–6, 9–12], the trigger particles in this analysis are restricted to
two narrow ηlab windows: −2.4 < η

trig
lab < −2.0 (Pb-side) and 2.0 < η

trig
lab < 2.4 (p-side). The

associated particles are from the entire measured ηlab range of −2.4 < ηassoc
lab < 2.4.

The associated particles are weighted by the inverse of the efficiency factor, εtrk(ηlab, pT), as a
function of the track’s pseudorapidity and pT [41]. The efficiency factor accounts for the detec-
tor acceptance A(ηlab, pT), the reconstruction efficiency E(ηlab, pT), and the fraction of misiden-
tified tracks, F(ηlab, pT),

εtrk(ηlab, pT) =
AE

1− F
.

The corresponding correction function is obtained from a PYTHIA 6 (tune Z2) [50] plus GEANT4
[45] simulation.

4.1 Quantifying the jet contributions

Figure 1 shows the two-dimensional (2D) correlated yield for the two trigger particle pseudora-
pidity windows in low and high multiplicity events. The same pT range of 0.3 < pT < 3.0 GeV/c
is used for trigger and associated particles. The peak at (0, 0) is the near-side jet-like structure.
In the high multiplicity events, one can notice a ridge-like structure in |∆η| at ∆φ = 0 atop the
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Figure 1: (Color online) Efficiency-corrected 2D associated yields with Pb-side trigger particle
(−2.4 < η

trig
lab < −2.0, left panels) and p-side trigger particle (2.0 < η

trig
lab < 2.4, right panels) in

low-multiplicity (2 ≤ Noffline
trk < 20, upper panels) and high-multiplicity (220 ≤ Noffline

trk < 260,
lower panels) are shown for pPb collisions at

√
sNN = 5.02 TeV. The associated and trigger

particle pT ranges are both 0.3 < pT < 3 GeV/c.

high combinatorial background. A similar extensive structure can also be seen on the away side
∆φ = π, which contains the away-side jet. Unlike correlation functions from previous stud-
ies, the correlated yield is asymmetric in ∆η; it reflects the asymmetric single particle dN/dη
distribution in the pPb system.

The ∆φ distribution of the associated yield is projected within each ∆η bin (with a bin width of
0.2). Before quantifying jet contributions, the zero-yield-at-minimum (ZYAM) technique [51] is
used to subtract a uniform background in ∆φ. To obtain the ZYAM background normalization,
the associated yield distribution is first projected into the range of 0 < ∆φ < π, and then
scanned to find the minimum yield within a ∆φ window of π/12 radians. This minimum yield
is treated as the ZYAM background. The ZYAM background shape as a function of ∆η is similar
to the shape of the single particle density.

After ZYAM subtraction, the signal will be zero at the minimum. For example, the ∆φ dis-
tributions in high- and low-multiplicity collisions are depicted in Fig. 2 for two, short-(0 <
|∆η| < 0.2) and long-range(2.8 < |∆η| < 3.0), ∆η bins. They are composed of two character-
istic peaks: one at ∆φ = 0 (near-side) and the other at ∆φ = π (away-side), with a minimum
valley between the two peaks. For low-multiplicity collisions at large ∆η, no near-side peak is
observed.
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Figure 2: (Color online) Examples of the distribution of the associated yields after ZYAM
subtraction for both low-multiplicity (2 ≤ Noffline

trk < 20, blue triangles) and high-multiplicity
(220 ≤ Noffline

trk < 260, red circles) are shown for pPb collisions at
√

sNN = 5.02 TeV. The results
for Pb-side (left panels) and p-side (right panels) trigger particles are both shown; small ∆η
in the upper panels and large |∆η| in the lower panels. The trigger and associated particle pT
ranges are both 0.3 < pT < 3 GeV/c.

First, the ∆η dependence of the correlated yield is analyzed. In each ∆η bin, the correlated
yield is averaged within the near side (|∆φ| < π/3. The correlated yield reaches a minimum
at around π/3). The near-side averaged correlated yield per radian, (1/Ntrig)(dN)/(d∆η), is
shown as a function of ∆η in Fig. 3. In low-multiplicity collisions, the near-side ∆η correlated
yield is consistent with zero at large ∆η. This indicates that the near side in low-multiplicity pPb
collisions is composed of only a jet component after ZYAM subtraction. In high-multiplicity
collisions, an excess of the near-side correlated yield is seen at large ∆η and it is due to the
previously observed ridge [10].

In order to quantify the near-side jet contribution, the near-side correlation function is fitted
with a two-component functional form:

1
Ntrig

dNnear(∆η)

d∆η
=

Yβ√
2σΓ(1/2β)

exp

[
−
(

∆η2

2σ2

)β
]
+ (C + k∆η)ZYAM(∆η). (1)

The first term represents the near-side jet; Y is the correlated yield, and σ and β describe the
correlation shape. Neither a simple Gaussian nor an exponential function describes the jet-like
peak adequately. However, a generalized Gaussian form as in Eq. (1) is found to describe the
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Figure 3: (Color online) The near-side (|∆φ| < π/3) correlated yield after ZYAM subtraction
in low-multiplicity 2 ≤ Noffline

trk < 20 (upper panels) and high-multiplicity 220 ≤ Noffline
trk < 260

(lower panels) are shown for pPb collisions at
√

sNN = 5.02 TeV. The trigger and associated
particle pT ranges are both 0.3 < pT < 3 GeV/c. The trigger particles are restricted to the
Pb-side (−2.4 < η

trig
lab < −2.0, left panels) and the p-side (2.0 < η

trig
lab < 2.4, right panels),

respectively. Fit results using Eq. (1) (black solid curves) are superimposed; the red dashed
curve and the blue open points are the two fit components, jet and ridge, respectively.

data well. The second term on the right-hand side of Eq. (1) represents the ridge structure.
Since the ridge is wide in ∆η and may be related to the bulk medium, its shape is modeled as
dominated by the underlying event magnitude, ZYAM(∆η). However, the background shape
multiplied by a constant is not adequate to describe the ridge in high multiplicity events. In-
stead, the background shape multiplied by a linear function in ∆η, as in Eq. (1), can fit the data
well, with reasonable χ2/ndf (where ndf is the number of degree of freedom) (see Table 1).
Here C quantifies the overall strength of the ridge yield relative to the underlying event, and k
indicates the ∆η dependence of the ridge in addition to that of the underlying event.

The fits using Eq. (1) are superimposed in Fig. 3 and the fit parameters are shown in Table 1.
For low-multiplicity collisions, the k parameter is consistent with zero and, in the fit shown, it
is set to zero. For high-multiplicity collisions, the C parameter is positive, reflecting the finite
ridge correlation, and the k parameter is nonzero, indicating that the ridge does not have the
same ∆η shape as the underlying event. As already shown in Fig. 3, the ridge (correlated yield
at large ∆η) is not constant but ∆η-dependent.

The fitted Y parameter shows that the jet-like correlated yield in high-multiplicity collisions
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Table 1: Summary of fit parameters for low- and high-Noffline
trk ranges in pPb collisions.

Noffline
trk < 20

Parameter Pb-side trigger p-side trigger

Y 0.130± 0.003 0.156± 0.003
σ 0.445± 0.011 0.446± 0.010
β 0.943± 0.057 0.870± 0.043
C 0.0045± 0.0009 0.0045± 0.0010
k 0 (Fixed) 0 (Fixed)
χ2/ndf 0.279 0.459

220 ≤ Noffline
trk < 260

Parameter Pb-side trigger p-side trigger

Y 0.401± 0.011 0.489± 0.011
σ 0.457± 0.008 0.492± 0.007
β 0.757± 0.003 0.782± 0.025
C 0.0137± 0.0004 0.0098± 0.0004
k −0.0011± 0.0001 0.0002± 0.0001
χ2/ndf 1.074 0.463

(Y220≤Noffline
trk <260) is larger than that in low-multiplicity collisions (YNoffline

trk <20). The ratio is

α = Y220≤Noffline
trk <260/YNoffline

trk <20 =

{
3.08± 0.11+0.96

−0.31 for Pb-side triggers;
3.13± 0.09+0.28

−0.28 for p-side triggers,
(2)

where the ± sign is followed by the statistical uncertainty from the fit. The upper “+” and
lower “−” are followed by the systematic uncertainty, which is obtained by fitting different
functional forms, such as Gaussian and exponential functions, and by varying the ∆η range to
calculate the ZYAM value.

The α values are used as a scaling factor when correlations from low-multiplicity collisions are
removed in determining the Fourier coefficients in high-multiplicity events.

4.2 Fourier coefficients

For each ∆η bin, the azimuthal anisotropy harmonics, Vn, can be calculated from the two-
particle correlation ∆φ distribution,

Vn = 〈cos n∆φ〉.

The 〈〉 denotes the averaging over all particles and all events. At large ∆η, the near-side jet
contribution is negligible, but the away-side jet still contributes. The jet contributions may
be significantly reduced or eliminated by subtracting the low-multiplicity collision data, via a
prescription described in Ref. [27],

Vsub
n = VHM

n −VLM
n

NLM
assoc

NHM
assoc

α. (3)

Here LM and HM stand for low-multiplicity and high-multiplicity, respectively. NHM
assoc and

NLM
assoc are the associated particle multiplicities in a given pseudorapidity bin, and VHM

n and
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VLM
n are the Fourier coefficients in high- and low-multiplicity collisions, respectively. The α

value is obtained from Eq. (2). This procedure to extract Vn is tested by studying the pPb
collisions generated by the HIJING 1.383 model [48]. The basic HIJING model has no flow, so a
flow-like signal is added [52] by superimposing an azimuthal modulation on the distributions
of the produced particles. The measured V2 using Eq. (3) is consistent with the input flow value
within a relative 5% difference.

To quantify the anisotropy dependence as a function of ηlab, assuming factorization,
Vn(η

trig
lab , ηassoc

lab ) = vn(η
trig
lab )vn(ηassoc

lab ), a self-normalized anisotropy is calculated from the Fourier
coefficient Vn.

vn(ηassoc
lab )

vn(ηassoc
lab = 0)

=
Vn(ηassoc

lab )

Vn(ηassoc
lab = 0)

. (4)

Here the ηassoc
lab is directly calculated from ∆η, assuming the trigger particle is at a fixed ηlab

direction
ηassoc

lab = ∆η + η
trig
lab , (5)

in which η
trig
lab = −2.2 (2.2) for the Pb-side (p-side) trigger. Hereafter, we write only ηlab, elimi-

nating the superscript ‘assoc’ from ηassoc
lab .

To avoid short-range correlations that remain even after the subtraction of the low-multiplicity
events, only correlations with |∆η| > 2 are selected to construct the vn pseudorapidity distri-
butions.

5 Systematic uncertainties
The systematic uncertainties in the Fourier coefficient Vn are estimated from the following
sources: the track quality requirements by comparing loose and tight selections; bias in the
event selection from the HLT trigger, by using different high-multiplicity event selection cri-
teria; pileup effect, by requiring a single vertex per event; and the event vertex position, by
selecting events from different z-vertex ranges. In the low multiplicity Vn subtraction, the jet
ratio parameter α is applied. The systematic uncertainties in α are assessed by using fit func-
tions different from Eq. (1), as well as by varying the ∆η range when obtaining the ZYAM value.
This systematic effect is included in the final uncertainties for the multiplicity-subtracted Vn.
In addition, the effect of reversing the beam direction is studied. This is subject to the same
systematic uncertainties already described above; thus it is not counted in the total systematic
uncertainties, but is used as a cross-check.

The estimated uncertainties from the above sources are shown in Table 2. Combined together,
they give a total uncertainty of 3.9% and 10% for V2 and V3 coefficients, respectively, as deter-
mined without the subtraction of signals from low-multiplicity events. For low-multiplicity-
subtracted results, the systematic uncertainties rise to 5.8% and 15%, respectively.

The systematic uncertainties from the track-quality and jet-ratio selection are correlated among
the pseudorapidity bins, so they cancel in the self-normalized anisotropy parameter,
vn(ηlab)/vn(ηlab = 0). The systematic uncertainties in other sources are treated as completely
independent of pseudorapidity and are propagated in vn(ηlab)/vn(ηlab = 0). The estimated
systematic uncertainties in v2(ηlab)/v2(ηlab = 0) and v3(ηlab)/v3(ηlab = 0) without low mul-
tiplicity subtraction are estimated to be 3.6% and 10%, respectively. For low-multiplicity-
subtracted results, the systematic uncertainties rise to 5.7% and 14%, respectively .
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Table 2: Summary of systematic uncertainties in the second and third Fourier harmonics in pPb
collisions. The label “low-mult sub” indicates the low-multiplicity subtracted results, while ”no
sub” indicates the results without subtraction.

220 ≤ Noffline
trk < 260

Source V2 (no sub) V2 (low-mult sub) V3 (no sub) V3 (low-mult sub)

Track quality requirement 3.0% 3.0% 7.0% 11.0%
HLT trigger bias 2.0% 2.5% 2.0% 2.5%

Effect from pileups 1.5% 3.0% 3.5% 3.5%
Vertex dependence 0.5% 1.0% 6.0% 9.0%

Jet ratio — 3.0% — 3.0%

Total 3.9% 5.8% 10% 15%

6 Results
The V2 and V3 values in high-multiplicity collisions for Pb-side and p-side trigger particles
are shown in Fig. 4. The strong peak is caused by near-side short-range jet contributions.
The Fourier coefficients, Vsub

2 and Vsub
3 , after the low-multiplicity data are subtracted, are also

shown. The short-range jet-like peak is largely reduced, but may not be completely eliminated
due to different near-side jet-correlation shapes for high- and low-multiplicity collisions. The
long-range results are not affected by the near-side jet, but the away-side jet may still contribute
if its shape is different in high- and low-multiplicity collisions or if its magnitude does not scale
according to α.

By self-normalization via Eq. (4), the Fourier coefficient from both trigger sides can be merged
into a single distribution by combining the negative and positive ηlab range. The lab frame
central value ηlab = 0 is used so that the separation of the central value to both η

trig
lab is the

same. In this way, possible contamination from jets is kept at the same level as a function of
ηlab. This is more important for the Fourier coefficients determined without the subtraction of
the low-multiplicity data.

Figure 5 shows the v2(ηlab)/v2(ηlab = 0) and v3(ηlab)/v3(ηlab = 0) results obtained from the
corresponding V2 and V3 data in Fig. 4. The curves show the vn(ηlab)/vn(ηlab = 0) obtained
from the high-multiplicity data alone, VHM

n , without subtraction of the low-multiplicity data.
The data points are obtained from the low-multiplicity-subtracted Vsub

n ; closed circles are from
the Pb-side trigger particle data and open circles from the p-side. To avoid large contamination
from short-range correlations, only the |∆η| > 2 range is shown, but still with enough overlap
in mid-rapidity ηlab between the two trigger selections; good agreement is observed. Significant
pseudorapidity dependence is observed for the anisotropy parameter; it decreases by about
(24± 4)% (statistical uncertainty only) from ηlab = 0 to ηlab = 2 in the p-direction. The behavior
of the normalized v2(ηlab)/v2(ηlab = 0) is different in the Pb-side, with the maximum difference
being smaller. The v2 appears to be asymmetric about ηcm = 0, which corresponds to ηlab =
0.465. A non-zero v3 is observed, however the uncertainties are too large to draw definite
conclusion regarding its pseudorapidity dependence.

When using long-range two-particle correlations to obtain anisotropic flow, the large pseu-
dorapidity separation between the particles, while reducing nonflow effects, may lead to un-
derestimation of the anisotropic flow because of event plane decorrelation stemming from the
fluctuating initial conditions [38, 39]. This effect was studied in pPb and PbPb collisions [40].
The observed decrease in v2 with increasing absolute value of pseudorapidity could be partially
due to such decorrelation.
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Figure 4: (Color online) Fourier coefficients, V2 (upper) and V3 (lower), of two-particle az-
imuthal correlations in high-multiplicity collisions (220 ≤ Noffline

trk < 260) with (circles) and
without (triangles) subtraction of low-multiplicity data, as a function of ηlab. Left panel shows
data for Pb-side trigger particles and the right panel for the p-side. Statistical uncertainties are
mostly smaller than point size; systematic uncertainties are 3.9% and 10% for V2 and V3 with-
out low-multiplicity subtraction, 5.8% and 15% for V2 and V3 with low-multiplicity subtraction,
respectively. The systematic uncertainties are shown by the shaded bands.

The asymmetry of the azimuthal anisotropy is studied by taking the ratio of the vn value at
positive ηcm to the value at −ηcm in the center-of-mass frame, as shown in Fig. 6. The ratio
shows a decreasing trend with increasing ηcm.

In pPb collisions, the average pT of charged hadrons depends on pseudorapidity. As stated
in Ref. [35], the pseudorapidity dependence of 〈pT〉 could influence the pseudorapidity depen-
dence of v2. This may have relevance to the shape of the normalized v2 distribution as observed
in Fig. 5. To compare v2 and the 〈pT〉 distribution, the pT spectra for different ηcm ranges are
obtained from Ref. [53]. The charged particle pT spectra in minimum-bias events are then fitted
with a Tsallis function [54],

1
2πpT

d2N
dη dpT

= C
(

1 +
pT

nT

)−n
(6)

where C, n, T are the fit parameters. The inclusive-particle pT is averaged within 0 < pT <
6 GeV/c. In addition, the average momentum for the particles used in this analysis, 0.3 < pT <
3 GeV/c and 220 ≤ Noffline

trk < 260, is calculated and plotted in Fig. 7. The 〈pT〉 as a function
of ηcm does not change for different multiplicity ranges within 1%. Thus, the minimum bias
〈pT〉 distribution is compared directly to the high-multiplicity anisotropy v2 result. The 〈pT〉
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Figure 5: (Color online) Self-normalized anisotropy parameters, v2(ηlab)/v2(ηlab = 0) (left
panel) and v3(ηlab)/v3(ηlab = 0) (right panel), as a function of ηlab. Data points (curves) are re-
sults with (without) low-multiplicity data subtraction; filled circles and solid lines are from the
Pb-side trigger. Open circles and dashed lines are from the p-side trigger. The bands show sys-
tematic uncertainties of ±5.7% and ±14% for v2(ηlab)/v2(ηlab = 0) and v3(ηlab)/v3(ηlab = 0),
respectively. The systematic uncertainties in vn(ηlab)/vn(ηlab = 0) without subtraction are sim-
ilar. Error bars indicate statistical uncertainties only.

cm
η

0 0.5 1 1.5

 )
cmη

 (
- 

2
) 

/v
cmη ( 2v

0.6

0.8

1

1.2
CMS =5.02 TeVNNspPb 

 < 260offline
trk N≤220 
 < 3 GeV/c

T
 0.3 < p

Figure 6: (Color online) v2(ηcm)/v2(−ηcm), as a function of ηcm in the center-of-mass frame.
The data points are results from Vsub

n with low-multiplicity data subtracted. The bands show
the systematic uncertainty of ±5.7%. Error bars indicate statistical uncertainties only.

distribution is normalized by its value at ηcm = 0. Self-normalized 〈pT〉(ηcm)/〈pT〉(ηcm = 0)
is plotted on Fig. 7, compared to the self-normalized v2(ηcm)/v2(ηcm = −0.465) distribution
in the center-of-mass frame. The systematic uncertainty band on 〈pT〉(ηcm)/〈pT〉(ηcm = 0) is
obtained by averaging the upper and lower limits of the systematic uncertainty band from the
underlying pT spectra. The hydrodynamic theoretical prediction for 〈pT〉(ηcm)/〈pT〉(ηcm = 0)
is also plotted.

As shown in Fig. 7, the hydrodynamic calculation [35] for 〈pT〉 falls more rapidly than 〈pT〉 of
data (solid and dotted lines) towards positive ηcm. The distribution is asymmetric for both data
and theory. The comparison of the 〈pT〉 and the v2 distributions shows that both observables
have a decreasing trend towards large |ηcm|, but the decrease in 〈pT〉 at forward pseudorapidity
is smaller. The decrease of v2 with ηcm does not appear to be entirely due to a change in 〈pT〉;
other physics is likely at play. The value of v2 decreases by (20± 4)% (statistical uncertainty
only) from ηcm = 0 to ηcm ≈ 1.5.
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Figure 7: (Color online) Self-normalized v2(ηcm)/v2(ηcm = −0.465) distribution with low-
multiplicity subtraction from Pb-side (filled circles) and p-side (open circles) triggers, and
〈pT〉(ηcm)/〈pT〉(ηcm = 0) of 0 < pT < 6 GeV/c range from minimum-bias events (solid line)
and 0.3 < pT < 3 GeV/c range from high-multiplicity (220 ≤ Noffline

trk < 260) events (dotted line)
as functions of ηcm. Dashed curve is the hydrodynamic prediction for 〈pT〉(ηcm)/〈pT〉(ηcm = 0)
distribution.

7 Summary
Two-particle correlations as functions of ∆φ and ∆η are reported in pPb collisions at

√
sNN =

5.02 TeV by the CMS experiment. The trigger particle is restricted to narrow pseudorapidity
windows. The combinatorial background is assumed to be uniform in ∆φ and normalized by
the ZYAM procedure as a function of ∆η. The near-side jet correlated yield is fitted and found
to be greater in high-multiplicity than in low-multiplicity collisions. The ridge yield is studied
as a function of ∆φ and ∆η and it is found to depend on pseudorapidity and the underlying
background shape ZYAM(∆η). The pseudorapidity dependence differs for trigger particles
selected on the proton and the Pb sides.

The Fourier coefficients of the two-particle correlations in high-multiplicity collisions are re-
ported, with and without subtraction of the scaled low-multiplicity data. The pseudorapidity
dependence of the single-particle anisotropy parameters, v2 and v3, is inferred. Significant
pseudorapidity dependence of v2 is found. The distribution is asymmetric about ηcm = 0 with
an approximate (20± 4)% decrease from ηcm = 0 to ηcm ≈ 1.5, and a smaller decrease towards
the Pb-beam direction. Finite v3 is observed, but the uncertainties are presently too large to
draw conclusions regarding the pseudorapidity dependence.

The self-normalized v2(ηcm)/v2(ηcm = −0.465) distribution is compared to the
〈pT〉(ηcm)/〈pT〉(ηcm = 0) distribution from minimum bias events as well as from hydrody-
namic calculations. The 〈pT〉(ηcm)/〈pT〉(ηcm = 0) distribution shows a decreasing trend to-
wards positive ηcm. The v2(ηcm)/v2(ηcm = −0.465) distribution also shows a decreasing trend
towards positive ηcm, but the decrease is more significant in the case of the v2 measurement.
This indicates that physics mechanisms other than the change in the underlying particle spec-
tra, such as event plane decorrelation over pseudorapidity, may influence the anisotropic flow.
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L. Perniè, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, R. Yonamine, F. Zenoni,
F. Zhang3

Ghent University, Ghent, Belgium
K. Beernaert, L. Benucci, A. Cimmino, S. Crucy, D. Dobur, A. Fagot, G. Garcia, M. Gul,
J. Mccartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva, M. Sigamani, M. Tytgat,
W. Van Driessche, E. Yazgan, N. Zaganidis
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Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique
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V. Calvellia ,b, F. Ferroa, M. Lo Veterea,b, M.R. Mongea ,b, E. Robuttia, S. Tosia ,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
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INFN Sezione di Napoli a, Università di Napoli ’Federico II’ b, Napoli, Italy, Università della
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M. Menichellia, A. Sahaa, A. Santocchiaa ,b
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